2 research outputs found

    Introducing LQR-fuzzy for a dynamic multi area LFC-DR model

    Get PDF
    It is well known that Load Frequency Control (LFC) model plays a vital role in electric power system design and operation. In the literature, much research works has stated on the advantages and realization of DR (Demand Response), which has proved to be an important part of the future smart grid. In an interconnected power system, if a load   demand changes randomly, both frequency and tie line power varies. LFC-DR model is tuned by standard controllers like PI, PD, PID controllers, as they have constant gains. Hence, they are incapable of acquiring desirable dynamic performance for an extensive variety of operating conditions and various load changes. This paper presents the idea of introducing a DR control loop in the traditional Multi area LFC model (called LFC -DR) using LQR- Fuzzy Logic Control. The effect of DR-CDL i.e. (Demand Response Communication Delay Latency) in the design is also considered and is linearized using Padé approximation. Simulation results shows that the addition of DR control loop with proposed controller guarantees stability of the overall closed-loop LFC-DR system which effectively improves the system dynamic performance and is superior over a classical controller at different operating scenarios

    ANN based LFC with Coordination strategies of DERs in Hybrid Isolated Micro-Grid Environment

    No full text
    This paper provides a load frequency control (LFC) of a micro grid with renewable energy resources (RES). The operation of micro grid with a low inertia system leds to disturbances in power system. The disturbances in frequency is more in micro grid than conventional power system. So there should be a fast recovery of changes in frequency with existing system and interconnected system (RES). Active power injection is the main scheme to control frequency of a system. The matlab simulink tells us that different active power injection system contribute for the fast control of grid frequency with PID controller. The use of ANN technology to this system the load frequency control can be illustrated in faster rate of its recovery. An ANN controller is investigated which handles the inputs collectively in each sector of the power system. Back-transmission time is normally used in the study for neural network education. The performance of the power system is simulated independently with a typically integrated conventional controller and ANN controller. A complete spectrum of small signals is introduced for RESs in the isolated microgrid and a correct role in frequency control studies is taken into account
    corecore